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Summary

We describe algorithms for automating the process of
picking seismic events in pre-stack migrated gathers. The
approach uses supervised learning and statistical
classification algorithms along with advanced signal/image
processing algorithms. We train a probabilistic neural
network (PNN) for pixel classification using event times
and offsets (ground truth information) picked manually by
expert interpreters. The key to success is in using effective
features that capture the important behavior of the
measured signals. We use a variety of features calculated
in a local neighborhood about the pixel under analysis.
Feature selection algorithms are used to ensure that we use
only the features that maximize class separability. The
novelty of the work lies in (a) the use of pre-stack migrated
gathers rather than stacked data, (b) the use of two-
dimensional statistical and wavelet features, and (c) the use
of a PNN for classification.

Introduction

One of the major keys to seismic oil exploration is the
estimation of the acoustic wave velocities in the various
layers of the earth. It is required for depth migration in
regions such as salt boundaries, which contain rapid lateral
velocity variations. Velocity updating algorithms currently
require lengthy labor-intensive manual event picking and
tracking operations on migrated common reflection point
(CRP) panels. Our research in automatic event picking is
motivated by a desire to reduce event picking costs.

Our automatic event picking technique uses advanced
algorithms from the areas of automatic target recognition
(ATR), computer vision, and signal/image processing.
Whenever possible, prior knowledge of the geophysics is
incorporated into the processing algorithms to ensure
physical relevance and enhance the ability to obtain
meaningful results. We use supervised learning
methodology to train a probabilistic neural network? for
pixel classification using manually-picked event times. The
key to success is in using effective features that capture the
important behavior of the measured signals. We use a
variety of two-dimensional features calculated in a
neighborhood about the pixel under analysis (see the
section on feature extraction below).

Supervised learning

The event picking system is a supervised learning classifier
for which we define two classes; “event” and “background”
(not event). The supervised learning approach consists of
two steps; classifier training based on ground truth from
known samples, followed by a testing procedure based
upon the trained classifier.

In the training step, we present the classifier with a
“training set” of example event and background pixels
(time-offset locations in CRP panels), along with their
associated “ground truth,” or prior knowledge of the true
class to which each example belongs (manual classification
as event or background). Once the classifier is trained using
the “hold-one-out” method>:% to successfully classify the
training data with acceptable performance measured by
probability of detection and probability of false alarm,3-6
we move to the testing step.

The testing step consists of using the trained classifier to
process an image that was not included in the training set
and making the appropriate classifications. Testing can
occur in two very different ways: testing with a “testing
set”, and testing with an entire image. Testing with a
“testing set” means that we set aside examples of event
and background pixels, not using them for training, and
apply the trained classifier to them. Testing with an entire
image (image labeling) means that pixels of an image never

processed before are classified as event (1) or background
(0). A new binary labeled image is constructed by
assigning to each pixel the binary values of the
classifications. We also create posterior probability images
(see the section on image labeling). In this study we relied
on the performance measured by the hold-one-out training
method and only tested on an entire image.

The event picking process consists of four main parts:
preprocessing, pixel classification and labeling, region
formation, and postprocessing. Pixel classification and
labeling consists of feature extraction, feature selection,
and image labeling. This paper focuses only the pixel
classification and labeling step. Subsequent publications
will describe region formation and postprocessing.5
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Feature analysis

We adopt the view of the CRP panel as an image. This
paper analyses real seismic data that yields a CRP image
with 1600 time pixels and 45 offset pixels. The temporal
sampling period is 4 ms, and the offset sampling period is
400 feet.

Training Set Nomination: We create a set of training pixels

by the following process. First an expert picks several
event times for every offset and subpoint combination in
the dataset. 20 equally spaced CRP panels are chosen out
of the 468 CRP panels in the full dataset. Several of the
expert event picks are chosen at random from each of the
20 panels. Care is taken to ensure that the chosen training
events are independent by demanding a minimum
separation in time and offset between the pixels. Second,
several background pixels are manually picked by an expert
in each of the 20 panels. Care is taken that the these picks
represent a variety of background types and are
independent.

Feature extraction. We use a variety of features calculated
for each pixel in the training set. These features are
normalized by subtracting from each feature value the
mean of the feature values calculated over the ensemble of
training tiles, and dividing this result by the ensemble
standard deviation. This normalization makes the classifier
less sensitive to absolute units, which can vary somewhat
from feature to feature.

The features calculated include the following: (a)
Ampmm&mm7 or first order statistical
moments of the estimated probability density function in an
MxN neighborhood centered about the image pixel (we use
M=N=10). We started with mean, standard deviation,
skewness and kurtosis. After feature selection (described
in the next section), we chose to use only the mean and
standard deviation. (b) An offset coherence feature called
s_cmmml calculated over the local neighborhood
provides a useful indication of the coherence of the seismic
traces in the offset direction. (c) Q_ab_m_m&fg_un_ﬁqanms
are derived from hierarchical multi-resolution 2D Gabor
wavelet transforms of the CRP panels. These provide
magnitude and phase information about the events at a
variety of resolutions (scales), orientations (rotational
angles) and frequencies. A variety of elliptical Gabor
kernels were designed to have several different scales (with
corresponding frequencies) and a variety of orientations
characteristic of the CRP panel image. In figure 1, we
display the magnitude of two of these Gabor transforms of

the image overlaid on the raw seismic traces. Note that the
event is highlighted by the one Gabor kernel and the
multiple by the other. Figure 2 displays the histograms of
the absolute value of the Gabor phase over the training set
for background and events. Notice that the events are
picked at a well defined phase, that is, at a negative peak.

(a)
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Figure 1: Magnitude of Gabor transform shown as gray
scale image behind seismic data. Wavelet transform
parameters are: frequency of 15 Hz, temporal width of 27
ms, offset width of 3400 ft, and (a) no slope (b) slope of 12
ms/1000 ft. Expert event picks shown as circles at 4.3 s.



Automatic event picking using a PNN 3

background
12 —r— — T —— T T - T
10 1
8r j
6
sl
L L
%20 46 60 B 100 120 10 160 180
event
30 —r — T —T T —r T —
25¢ 1
20
15
101
5
ohnmmm . n—:r-'a[_] .
0 20 40 60 100

80 120 140 160 180
Gabor phass (deg)

Figure 2: Histograms of absolute value of Gabor phase for
same kernel used to form figure 1a. Histogram is taken
over training set.

Feature Selection: We use a formal feature selection
algorithm to rank order the features according to both the
Bhattacharyya and Mahalanobis measures of class
separability.6 We then choose an appropriate subset of
features for actual use by the classifier. This saves
computation and allows us to use only the most effective
features.>»® We use the well-known rule-of-thumb3-6 for
the lower bound on the number of training samples to use
— the number of independent training samples needed per
class should be at least five times the number of features
used in the feature vector. Note that this rule also implies
an upper bound on the number of features that can be used,
given the number of independent training samples. For our
problem, we trained the PNN classifier with 107 event tiles
and 100 background tiles. This limits us to using about 20
features, and in the analysis presented, we actually used 19
features.

Image labeling

Once the PNN classifier is trained, it is used to analyze an
image not included in the training set. Two types of
labeled image are created: (a) Binary labeled image: The
PNN classifies the center pixel as belonging to either the
class “event” or the class “background.” The resulting
image (containing only ones representing event pixels and
zeros representing background pixels) is called the “binary
labeled image”.  (b) Posterior probability image:
Alternatively, the PNN computes the posterior probability

P(Event|X), where X is the feature vector for the pixel
under consideration. These labeled images provide us with
an indication of the locations of probable event pixels.
This paper does not show an example of the posterior
probability image.

Processing results

During training with 100 or so samples of each class, the
parameters of the PNN were tuned to achieve the best
probability of correct classification. The probability of
detection achieved was 89% and the probability of false
alarm was 2%. This results in a probability of correct
classification of 94% with a 95% confidence interval
having lower bound 89% and upper bound 96%. Because
of the large penalty to be paid for false alarms in
subsequent seismic processing and the small penalty to be
paid for missing an event, it was decided to use PNN
parameters that lowered the probability of correct
classification to 88% but lead to a <0.1% false alarm rate.
Figure 3 shows the binary labeled CRP image and the
associated seismic data. The two expertly picked events at
3 s and 4.3 s are clearly labeled as events. A more precise
location of the event and a rejection of false alarms can be
achieved by postprocessing the labeled images.5 This step
is not described in this paper.
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Figure 3: The binary labeled image (gray=event,
white=background) plotted behind seismic data.
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Discussion

Several limitations and suggestions for overcoming them
are evident from this work. (1) In using a supervised
learning approach, we make a leap of faith that the training
set has high quality and is representative of the data to be
processed. One key limitation is that our ground truth
comes exclusively from the judgments of human experts,
so the quality of results is only as good as the human picks.
Future work includes using larger training sets. (2)
Background picks are difficult to make because there are
many types of background for a two-class problem (small
events, multiple reflections, etc.). It could be advantageous
to use multiple classes and expand the variety of
background types used. (3) False alarms can exist in the
labeled images, but they can be greatly mitigated by a
variety of techniques which will be used in our future work.
These include additional pre-processing, using of more
advanced features, region formation, postprocessing and
tracking of events from panel-to-panel.

Conclusions

Early work shows promise for supervised pixel
classification in pre-stack migrated gathers. During
training with approximately 100 samples of each class, the
probability of detection achieved was 89% and the
probability of false alarm was 2%. This results in a
probability of correct classification of 93% with a 95%
confidence interval having lower bound 89% and upper
bound 96%. The events indicated in the labeled images
correspond well with the ground truth picks and with large
events easily discernible by eye. Some false alarm regions
can exist in the labeled image. However, they consist
mostly of small events that are not of interest to manual
analysts, and we believe that they can be mitigated using
the techniques proposed for future work.
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